
Robinson Callou de Moura Brasil Filho

Arguing NP = PSPACE:
On the Coverage and Soundness of the

Horizontal Compression Algorithm

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em In-
formática of PUC-Rio in partial fulfillment of the requirements
for the degree of Doutor em Informática.

Advisor: Prof. Edward Hermann Haeusler

Rio de Janeiro
April 2024

Robinson Callou de Moura Brasil Filho

Arguing NP = PSPACE:
On the Coverage and Soundness of the

Horizontal Compression Algorithm

Thesis presented to the Programa de Pós–graduação em In-
formática of PUC-Rio in partial fulfillment of the requirements
for the degree of Doutor em Informática. Approved by the Ex-
amination Committee:

Prof. Edward Hermann Haeusler
Advisor

Departamento de Informática – PUC-Rio

Prof. Alex de Vasconcellos Garcia
IME

Prof. Alexandre Rademaker
Fundação Getúlio Vargas – Matriz

Prof. Bernardo Pinto de Alkmim
Pontifícia Universidade Católica do Rio de Janeiro – PUC-Rio

Prof. Jefferson de Barros Santos
FGV

Prof. Mario Roberto Folhadela Benevides
UFF

Prof. Mauricio Ayala Rincon
UnB

Rio de Janeiro, April 30th, 2024

All rights reserved.

Robinson Callou de Moura Brasil Filho
Has a Bachelor’s Degree in Computer Engineering, class of
2016, from the Military Institute of Engineering (IME, Rio
de Janeiro, Brazil). Has a MSc in Computer Science from the
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio,
Rio de Janeiro, Brazil), specialising in Formal Verification,
Proof Theory and Theory of Computation.

Bibliographic data
Filho, Robinson Callou de Moura Brasil

Arguing NP = PSPACE: On the Coverage and Soundness
of the Horizontal Compression Algorithm / Robinson Callou
de Moura Brasil Filho; advisor: Edward Hermann Haeusler. –
2024.

57 f. : il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática, 2024.

Inclui bibliografia

1. Informática – Teses. 2. Compressão de Provas. 3.
Lógica Minimal Puramente Implicacional. 4. Grafos Acíclicos
Dirigidos. 5. Prova Interativa de Teoremas. 6. Complexidade
de Algoritmos. I. Haeusler, Edward Hermann. II. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Informática. III. Título.

CDD: 004

Acknowledgments

I thank my teacher and advisor, Prof. Edward Hermann Haeusler. Thank you
for all these years we’ve been working together, during both my masters and
my doctorate. Thank you, once again, for believing I could see this work to
fruition, even if, at many points, I myself may have not believed it possible.

I thank all the members of the Examination Committee, Prof. Alex de
Vasconcellos Garcia, Prof. Alexandre Rademaker, Prof. Jefferson de Barros
Santos, and Prof. Mauricio Ayala Rincon. Thank you for reviewing my work
and for the contributions you’ve made.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Abstract

Filho, Robinson Callou de Moura Brasil; Haeusler, Edward Her-
mann (Advisor). Arguing NP = PSPACE: On the Coverage
and Soundness of the Horizontal Compression Algorithm.
Rio de Janeiro, 2024. 57p. Doctorate Thesis – Departamento of
Informatics, Pontifícia Universidade Católica do Rio de Janeiro.

This work is an elaboration, with examples, and evolution of the presen-
ted Horizontal Compression Algorithm (HC) and its set of Compression Rules.
This work argues a proof, done in the Lean Interactive Theorem Prover, that
the HC algorithm can obtain a Compressed Derivation, represented by a Direc-
ted Acyclic Graph, from any Tree-Like Natural Deduction Derivation in Min-
imal Purely Implicational Logic. Finally, from the Coverage and Soundness of
the HC algorithm, one can argue that NP = PSPACE.

Keywords
Proof Compression; Purely Implicational Minimal Logic; Directed

Acyclic Graphs; Interactive Theorem Proving; Algorithmic Complexity.

Resumo

Filho, Robinson Callou de Moura Brasil; Haeusler, Edward Her-
mann. Argumentando NP = PSPACE: Sobre a Cobertura
e Corretude do Algoritmo de Compressão Horizontal. Rio
de Janeiro, 2024. 57p. Tese de Doutorado – Departamento de In-
formática, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho é uma elaboração, com exemplos, e evolução do Algoritmo
de Compressão Horizontal (HC) apresentado e seu Conjunto de Regras de
Compressão. Este trabalho apresenta uma prova, feita no Provador Interativo
de Teoremas Lean, de que o algoritmo HC pode obter uma Derivação Compri-
mida, representada por um Grafo Acíclico Dirigido, a partir de qualquer De-
rivação Tipo-Árvore em Dedução Natural para a Lógica Minimal Puramente
Implicacional. Finalmente, a partir da Cobertura e Corretude do algoritmo
HC, pode-se argumentar que NP = PSPACE.

Palavras-chave
Compressão de Provas; Lógica Minimal Puramente Implicacional; Gra-

fos Acíclicos Dirigidos; Prova Interativa de Teoremas; Complexidade de Al-
goritmos.

Table of contents

1 Introduction 10

2 Previous Work 17

3 Proof Theory Background 19

4 Horizontal Compression 26
4.1 Primary Definitions 26
4.2 The Horizontal Compression Algorithm and Rules 27
4.3 The Preservation of Soundness of the Compression Rules 29

5 Example of Horizontal Compression 34

6 Formalisation in Lean 45
6.1 Type Definitions 45
6.2 Proving the Main Theorem 47

7 Future Work 54

8 Conclusion 55

List of figures

Figure 1.1 Representation of the Type-0 Neighborhoods, from left-
to-right: Type-0 Elimination, Type-0 Introduction and Type-0
Hypothesis. 12

Figure 1.2 Representation of a generic Type-1 Collapse Neighborhood. 13
Figure 1.3 Representation of the Type-2 Neighborhoods, from left-

to-right: Type-2 Elimination, Type-2 Introduction and Type-2
Hypothesis. 14

Figure 1.4 Representation of a generic Type-3 Collapse Neighborhood. 15

Figure 3.1 Relating minimal formulas and leaves in the syntax tree
of a tautology 23

Figure 4.1 Nodes u and v before (left) and after (right) collapse
HCom(u, v) 29

Figure 5.1 Deriving A1 ⊃ A5 from A1 ⊃ A2, A1 ⊃ (A2 ⊃ A3),
A2 ⊃ (A3 ⊃ A4), and A3 ⊃ (A4 ⊃ A5). 35

Figure 5.2 DLDS equivalent to the initial tree-like derivation. 35
Figure 5.3 MDE Compression Rule R0EE. 36
Figure 5.4 Collapsing of nodes u and v: Matching of R0EE. 36
Figure 5.5 Resulting DLDS after collapse by R0EE. 36
Figure 5.6 MDE Compression Rule Rv2EE. 37
Figure 5.7 MDE Compression Rule Re2EE. 37
Figure 5.8 MDE Compression Rule Re2XE. 38
Figure 5.9 Defocused DLDS from figure 5.5. 39
Figure 5.10 Collapsing of nodes u and v: Matching of Rv2EE to the

DLDS at figure 5.9. 40
Figure 5.11 Rearrangement of the DLDS at figure 5.10. 40
Figure 5.12 Resulting DLDS after applying Rv2EE to the DLDS

at figure 5.11. 41
Figure 5.13 Collapsing of nodes u and v: Matching of Re2XE to the

DLDS at 5.12. 41
Figure 5.14 Collapsing of nodes u and v: Matching of Re2EE to the

DLDS at 5.12. 42
Figure 5.15 Resulting DLDS after applying Re2XE and Re2EE to

the DLDS at 5.12. 42
Figure 5.16 Summary of the MDE applications to the initial deriva-

tion. 43
Figure 5.17 Summary of the MUE applications to the initial deriva-

tion. 44

Macte virtute, sic itur ad astra.

Vergilius, AENEIS, IX, 641.

1
Introduction

This document presents a doctoral thesis of the Department of Infor-
matics at PUC-Rio about the representation and size of proofs in natu-
ral deduction, proof compression in natural deduction, formal verification,
and the use of interactive theorem provers. The main result of this thesis
is the proof/formalization, done in Lean, that a valid Dag-Like Derivability
Structure (DLDS) is obtained by compressing any natural deduction deriva-
tion of the purely implicational minimal logic (M⊃) via an application of the
Moving Upwards Edges (MUE) phase of the Horizontal Compression Algo-
rithm (HC), made avaible in [1].

Proof compression has many significant uses, meaning that an algorithm
like HC would have many practical applications. Many problems require
the formal verification of the proofs of their solution. In computer science,
for example, formal verification techniques can be used to guarantee the
correctness of algorithms, systems, and protocols. Compressing the size of these
proofs reduces makes their verification faster and more efficient. Large proofs
are also computationally expensive to store and manipulate. By compressing a
proof, one reduces the space required to store it. Computation on smaller sized
proofs, such as proof-checking or the transmission of the proof as a file, are
also faster than on bigger ones. This would be specially relevant in resource
constrained environments. In essence, proof compression allows for a more
sensible use of resources, without compromising the integrity of verification. It
could even be what makes verification at all feasible in the case of particularly
complex or huge proofs.

The formalization in Lean, though not a 1-to-1 translation of the math-
ematical proofs shown in [2], was indeed based both on the definition of HC
and on the proofs of its properties as shown in [2]. The proof shows, both as
a lemma and as a corollary, that not only the final, fully-compressed DLDS,
but also the initial tree-like derivation and all other intermediary graph-like
structures produced by HC are valid DLDS. This work also explains how HC
has changed and improved over time, much in part due to insights taken from
the effort of formalisation. This sort of moving goalpost approach to the devel-
opment of the algorithm HC in parallel with the formalisation of its properties

Chapter 1. Introduction 11

has so far been indeed beneficial, though sometimes laborious. These develop-
ments should also be regarded as one of this work’s contributions.

The size |Π| of a formal proof/derivation Π is considered to be
the number of occurrences of letters in the word obtained by lineariz-
ing its representation[3]. Proofs/derivations in natural deduction are usu-
ally represented using trees (proof-trees), therefore proof compression for
proofs/derivations in natural deduction is the same as compressing the infor-
mation on these proof-trees. An idea to compress these proof-trees is to first
view them as proof-graphs. One can then manipulate these proof-graphs, by
enriching their representation with additional information, in order to prune
their redundancy, producing smaller, compressed proofs/derivations, so long as
the gains from pruning said redundancies makes up for any added information.
Thus, using graph-like structures to represent logical proofs and derivations can
provide shorter sized proof objects, in comparison to using tree-like structures
as is commonplace in natural deduction.

One way to implement such a compression is via the horizontal collapse
of nodes with repeating formulas in the proof tree. The HC algorithm, for
the horizontal, left-to-right compression procedure that it applies, is based on
the collapses of equally labeled nodes in the original tree-like proof/derivation,
producing one valid Dag-Like Derivability Structure (DLDS) from another
valid DLDS, interactively, via a finite set of compression rules, each with its
specific conditions.

The compression rules of HC can be grouped in many ways. One such
grouping of the rules, the most important, in fact, in regards to the scope of
this work, is the distinction made between MUE-rules, for Moving Upwards
Edges, and MDE-rules, for Moving Down Edges[2]. All valid DLDS, like
any graph, constitute of a set of nodes and a set of edges, which in the case
of a DLDS can be separated into deduction-edges, entirely inherited from the
original proof-tree, and ancestral-paths (or ancestral-edges), created during
the collapse to maintain derivation integrity and entirely missing from the
original proof-tree. The MUE-rules are those rules used to either move up the
ancestral-paths when collapsing nodes that are the end-point of these edges
or create new ancestral-paths when the underlying structure requires so after
the collapsing of a node. Most of the rules of HC are MUE-rules and most of
the compression rate is due to these MUE-rules. The MDE-rules are those
rules used solely when the collapse involves a hypothesis-node (or top-node; or
top-formula), with the added effect of moving down, and sometimes dismissing,
ancestral-paths. These MDE-rules are invoked only at the end of the collapsing
of an entire sub-proof.

Chapter 1. Introduction 12

Another way that the compression rules of HC can be grouped is the
concept of the type hierarchy of HC, briefly defined as follows, using a
nomenclature akin to that of the formalisation:

➡ Type-0 Elimination, 6.2 which validates if a given neighborhood of
the DLDS represents a non-collapsed node that is the conclusion of an
application of ⊃-Elimination, as it was in the original tree-like proof,
with a non-collapsed parent-node or incoming ancestral-paths;

➡ Type-0 Introduction, 6.3 which validates if a given neighborhood of
the DLDS represents a non-collapsed node that is the conclusion of an
application of ⊃-Introduction, as it was in the original tree-like proof,
with a non-collapsed parent-node or incoming ancestral-paths;

➡ Type-0 Hypothesis, 6.4 which validates if a given neighborhood of the
DLDS represents a non-collapsed node that is a hypothesis, as it was in
the original tree-like proof, with a non-collapsed parent-node or incoming
ancestral-paths;

Figure 1.1: Representation of the Type-0 Neighborhoods, from left-to-right:
Type-0 Elimination, Type-0 Introduction and Type-0 Hypothesis.

➡ Type-1 Collapse, 6.6 which validates if a given neighborhood of the
DLDS represents a collapsed node resulting from the collapse: of a type-
0 and a type-0; or a type-1 and a type-0 nodes;

Chapter 1. Introduction 13

Figure 1.2: Representation of a generic Type-1 Collapse Neighborhood.

➡ Type-2 Elimination, 6.7 which validates if a given neighborhood of
the DLDS represents a non-collapsed node that is the conclusion of an
application of ⊃-Elimination, but not as it was in the original tree-like
proof, with a collapsed parent-node and a single incoming ancestral-path;

➡ Type-2 Introduction, 6.8 which validates if a given neighborhood of
the DLDS represents a non-collapsed node that is the conclusion of an
application of ⊃-Introduction, but not as it was in the original tree-like
proof, with a collapsed parent-node and a single incoming ancestral-path;

➡ Type-2 Hypothesis, 6.9 which validates if a given neighborhood of the
DLDS represents a non-collapsed node that is a hypothesis, but not as
it was in the original tree-like proof, with a collapsed parent-node and a
single incoming ancestral-path;

Chapter 1. Introduction 14

Figure 1.3: Representation of the Type-2 Neighborhoods, from left-to-right:
Type-2 Elimination, Type-2 Introduction and Type-2 Hypothesis.

➡ Type-3 Collapse, 6.11 which validates if a given neighborhood of the
DLDS represents a collapsed node resulting from the collapse of: a type-
0 and a type-0; or a type-0 and a type-2; or a type-2 and a type-0; or a
type-2 and a type-2; or a type-1 and a type-0; or a type-1 and a type-2;
or a type-3 and a type-0; or a type-3 and a type-2 nodes.

Chapter 1. Introduction 15

Figure 1.4: Representation of a generic Type-3 Collapse Neighborhood.

If the subset of MUE-rules of HC is applied to a valid DLDS, then one
can be certain that it eventually halts exiting a DLDS that has no level with
two nodes labelled with the same formula, aside from its top-formulas, because
all MUE-rules must respect the type hierarchy.

Both these sub-groupings of the compression rules of HC, as well as
the concept that every compression rule can be defined as to separate sub-
procedures, namely the pre-collapse of each node followed by the collapse of the
pair of nodes, were improvements made after the begining of the formalisation
effort. The type hierarchy and division into sub-procedures were, in fact,
changes that had to be made to HC in order to streamline the formalisation.
The grouping of the rules into MUE-rules and MDE-rules was done to prove
that the final DLDS exited after the complete run of HC was still simple,
considering a natural separation between the ancestral and deduction edges.
When talking about these improvements, it seems wise to point out that each of
these groupings, these conceptualizations required subsequent changes to HC,

Chapter 1. Introduction 16

so that the algorithm would remain coherent. These changes mainly involved
the addition of new rules and the reordering of both the applications of the
rules and the step-by-step of the algorithm.

Though necessary for proving that the compressed proof is polynomial in
size (in relation to the height and the set of all M⊃ formulas occurring in the
original tree-like derivation) proving the soundness and the coverage, as those
are deeply connected in the formalisation, of the MDE-rules would require an
entirely different set of assumptions when compared to the MUE-rules. Thus,
the proof of these properties for the MDE-rules was deemed to be enough for
a separate endeavor to the work of this thesis.

The Lean (lean4 v0.0.140) interactive theorem prover [4][5] was chosen
for this formalization. This choice in using Lean was one made mostly out of
personal familiarity with the prover and dependent type theory as a whole, the
recent and continuing development of the prover itself (with lean4 having been
made available relatively recently) and its active online community. Other
positives, especially in comparison to some other provers, like the fact that
Lean is fairly easy to run as a program (with no extraction steps required) and
its more constructivist approach to theorem proving were also relevant for its
choosing.

2
Previous Work

This thesis continues and furthers the work shown in [2], with its main
objective being the formalisation of a Lean-assisted proof of Theorem 12 in [2].
Steps towards this result were presented at [6] and at [7], mainly concerning
the proof of coverage, which was, at the time, conceptualized as a fully separate
from the proof of soundness. At the time of [6] there was no distinction between
MUE-rules and MDE-rules. At the time of [7] the type hierarchy was not yet
fully realized and with the inductive part of the proof, the step-up from one
level to the level above it, still unfinished.

This thesis also reassessed the work done in [8]. In [2] and since the
authors focus on a different approach to the one used in [8], going beyond the
effects of proof compression in exponentially big proofs in M⊃ by focusing on
the properties of the algorithm HC. The formalisation shown in [8] was of a
more restrictive result than the one in [2] and thus research into its subject
was discontinued.

In a series of articles, [9], [10] and [11], the authors show how to
represent a derivation of α from Γ, in the natural deduction for purely minimal
implicational logic (M⊃), as a directed acyclic graph (dag). The authors also
present an earlier method, in relation to the current one in [2], of converting a
tree-like representation of a proof into their proposed dag-like representation[9].

Since its initial publication, this conversion procedure has evolved from
a stage where the size of the dag-like derivation is polynomially bounded
concerning |α| + |Γ| with a linearly bounded certificate C(α, Γ), to a stage
where a certificate C(α, Γ) is not needed and that a verification that the
dag-like derivation is valid can be performed in polynomial time concerning
|α| + |Γ|[10]. These improvements entail that NP = PSPACE, though this
is not the focus of the work presented here. The authors would later apply
their conversion procedure, now more closely resembling an implementation
of HC, directly to a specific class of height and formula occurrences, namely
the class of proofs of non-hamiltonicity for non-Hamiltonian graphs[11]. Thus,
they show a proof of CoNP = NP that does not need a Hudelmaier linear
bound[12], though this is not the focus of the results presented here.

Since their publication, many readers of [9], [10] and [11] demanded a

Chapter 2. Previous Work 18

computer-assisted proof of the results, due to the underlying combinatorial
structure of the work being hard to follow. As such, the main objective of this
thesis is to formalise such a proof, showing that the algorithm HC halts for
every M⊃ derivation, exiting a valid DLDS with no two equal nodes on the
same level, aside from the top-formulas. The motivation for this thesis is the
understanding that a computer-assisted proof would indeed be more verifiable,
when compared to a more classic, pen-and-paper proof.

Experiments with the compression of both naive and huge proofs in nat-
ural deduction for the non-hamiltonianicity of some graphs, such as a Petersen
graph, was done in [13]. A compression ratio of almost 90% was obtained, with
the bigger and more redundant proofs having the best compression ratio after
removing their redundant parts.

3
Proof Theory Background

Following the usual terminology of Natural Deduction and Proof Theory,
this chapter describes the concepts used in the later parts of this work.
Consider the usual definition of the syntax or parsing tree for formulas in
purely implicational minimal logic (M⊃). Given a formula ϕ1 ⊃ ϕ2 in M⊃, ϕ2

is its right-child and ϕ1 its left-child. These formulas label the respective right
and left child vertexes that are associated with them. A right-ancestral of a
vertex v in a syntax-tree Tα of a formula α is any vertex u, such that, either
v is the right-child of u, or, there is a vertex w, such that v is the right-child
of w and u is right-ancestral of w. In this context, a mathematical proof in
natural deduction is a derivation without open assumptions, and each of its
hypotheses must be discharged by applying a specific rule[3]. The only rules
applicable are the ⊃-Introduction (or ⊃-Intro) and ⊃-Elimination (or ⊃-Elim)
rules. These natural deduction rules of M⊃ are shown below:

[A]
...
B ⊃-Intro

A ⊃ B
A A ⊃ B ⊃-Elim

B

The left premise of an ⊃-Elimination rule is its minor premise, and the
right premise is its major premise. Both this rule’s conclusion and its minor
premise are sub-formulas of its major premise. Observe that the premise of
an ⊃-Introduction is also the sub-formula of its conclusion. A derivation is
a tree-like structure built using ⊃-Introduction and ⊃-Elimination rules. The
conclusion of the derivation is the root of this tree-like structure, and the leaves
are called top-formulas. A proof is a derivation that has each of its top-formula
discharged by an ⊃-Introduction application. The top-formulas are also called
assumptions. An assumption that it is not discharged by any ⊃-Introduction
rule in a derivation is called an open assumption. If Π is a derivation with
conclusion α and δ1, . . . , δn is the set of all of its open assumptions then it can
be said that Π is a derivation of α from δ1, . . . , δn.

Definition 3.1 (Proof-Branch). A proof-branch in a proof (or derivation) Π
is any sequence β1, . . . , βk of formula occurrences in Π, such that:

Chapter 3. Proof Theory Background 20

– δ1 is a top-formula, and;

– For every i = 1, k−1, either βi is an ⊃-Elimination major premise of an
application having βi+1 as conclusion or βi is an ⊃-Introduction premise
of an application having βi+1 as conclusion, and;

– δk either is the conclusion of the derivation or the minor premise of an
⊃-Elimination.

A normal derivation in M⊃is any derivation that does not have any for-
mula occurrence that is simultaneously the major premise of an ⊃-Elimination
and the conclusion of an ⊃-Introduction. A formula occurrence that is, simul-
taneously, the conclusion of an ⊃-Introduction and the major premise of an
⊃-Elimination is called a maximal formula. In [3], Prawitz describes the follow-
ing theorem for the Natural Deduction for the full1 propositional fragment of
minimal logic. Prawitz also describes the steps on how to obtain, via a process
of reduction of the original proof/derivation, the normal proof/derivation.

Theorem 3.1 (Normalization). Let Π be a derivation of α from ∆ =
{δ1, . . . , δn}. There is a normal proof Π′ of α from ∆′ ⊆ ∆. This proof Π′

of α is obtained by reducing the original proof Π of α.

In any normal proof/derivation, the format of a proof-branch provides
worth information on why huge proofs are redundant, as seen in this work.
Since no formula occurrence in a proof-branch can be, simultaneously, the
major premise of an ⊃-Elimination and the conclusion of an ⊃-Introduction,
the conclusion of an ⊃-Introduction can only be either: the premise of another
⊃-Introduction; or the minor premise of an ⊃-Elimination; or not be the
premise of any rule application at all in the proof-branch. In this last case,
it must be the conclusion of the proof/derivation. Either way, it always is the
last formula in the proof-branch. For any proof-branch but the principal proof-
branch2, any conclusion of an ⊃-Introduction has to be the premise of an ⊃-
Introduction. Hence, any proof-branch in a normal proof/derivation is divided
into two parts (possibly empty). For the E-part that starts the proof-branch,
its top-formula and every other formula occurrence in it must be the major
premise of an ⊃-Elimination. A formula occurrence that, simultaneously, is the
conclusion of an ⊃-Elimination and the premise of an ⊃-Introduction is called
the minimal formula of the proof-branch. The minimal formula starts the I-part
of the proof-branch, where every formula is the premise of an ⊃-Introduction,
except for the last formula occurrence of the proof-branch. From the format
of the proof-branches, one can conclude that the sub-formula principle holds

1The entire propositional fragment is {∨,∧,⊃,¬,⊥}
2The principal proof-branch ends in the conclusion of the derivation

Chapter 3. Proof Theory Background 21

for normal proofs in Natural Deduction for M⊃, in fact, for many extensions
of it. A proof-branch in Π is a principal proof-branch if its last formula is
the conclusion of Π. A secondary proof-branch is a proof-branch that is not
principal. The primary proof-branch is also called a 0-proof-branch. Any proof-
branch for which its last formula is the minor premise of a rule in the E-part of
a n-proof-branch is a n + 1-proof-branch. The following corollary ensures that,
without loss of generality, any Natural Deduction proof of a M⊃ tautology has
only sub-formulas of its conclusion occurring in its proof-tree.

Corollary 3.1 (Sub-formula Principle). Let Π be a normal derivation of α

from ∆ = {δ1, . . . , δm}. It is the case that for every formula occurrence β in
Π, β is a sub-formula of either α or of some of δi.

Without loss of generality, one can consider that some formula in M⊃

is a tautology if and only if there is a normal proof in atomic expanded form
that proves it. Of course, if it is a tautology, then it must have a proof. If it
has some proof, it also has a normal proof, obtained through normalization.
This fact is used to obtain the expanded form of any normal proof.

Definition 3.2. A normal proof/derivation is in expanded form, if and only
if all of its minimal formulas are atomic.

Proposition 3.1. Let Π be a proof (or derivation), in M⊃, of α from
Γ = {γ1, . . . , γk}. There is a proof in expanded (atomic) form of α from Γ.

Proof. Proof of proposition 3.1. If φ1 ⊃ φ2 is a minimal formula in some
proof-branch of Π, then one has the following form for Π, with focus on this
proof-branch:

Π1
φ1 ⊃ φ2

Π2

In order to have a smaller minimal formula in this proof-branch, one can replace
φ1 ⊃ φ2 by the following derivation:

[φ1] φ1 ⊃ φ2
φ2

φ1 ⊃ φ2

Yielding the following new derivation:

[φ1]
Π1

φ1 ⊃ φ2
φ2

φ1 ⊃ φ2

Π2

Chapter 3. Proof Theory Background 22

Proceed by replacing, now on φ2, until it is atomic. One can then prove by
induction over the size of the minimal formula that the basis is trivial, and the
figure above is the inductive one. To have the same result for the entire proof,
instead of only one proof-branch, one should just do another induction over
the number of proof-branches.

The following lemma 3.1 shows that their respective top-formula uniquely
defines the E-parts of any proof-branch in a normal proof in expanded form.
It uses the fact that if γ1 ⊃ γ2 is the major premise of an application of
⊃-Elimination, its conclusion must be to the right-hand side of this premise.

Lemma 3.1. Let Π be a normal proof in expanded form. Its respective top-
formulas uniquely determines the E-part of each proof-branch in Π.

Proof. Each proof-branch in Π has the form {δ0, . . . , q, . . . , δk}, where δ0 is a
top-formula, and q = δj, an atomic formula, is the minimal formula of the
proof-branch. By the proof-branch definition (definition 3.1) and the fact that
Π is a normal proof, for every i = 1, . . . , j, δi−1 is major premise of an ⊃-
Elimination of a rule application having δi as conclusion. After q = δj, the
only possible rule applications are ⊃-Introduction, by the format of normal
derivation’s proof-branches. So the sequence δ0, . . . , δj is maximal. Thus, from
the top-formula δ0, one can obtain the whole sequence of formulas by picking
up, recursively, the right-hand side of each of them. Finally, given the top-
formula δ0, the whole sequence δ0, . . . , δj = q is determined. This can be proven
by induction on the degree of the top-formula.

In the lemma 3.1 above, the E-part of each proof-branch is uniquely
induced from its top-formula (leaf). On the other direction, let q be an atomic
formula that is a minimal formula occurring in a proof-branch −→b of a normal
proof in expanded form. As such, q does not determine the top-formula of b⃗

uniquely. Consider the following two proof-branches, occurring in the normal
and expanded proof Π, in figure 3.1, for example:

{A ⊃ (B ⊃ (C ⊃ q)), (B ⊃ (C ⊃ q)), C ⊃ q, q, . . . , δ}

{B ⊃ (D ⊃ q), D ⊃ q, q, . . . , γ}

This figure shows a relation, pointed by the dashed lines, between the minimal
formula occurrences in Π and their respective occurrences in the associated
syntax tree. The minimal formula q occurs in both proof-branches, and if given
only q, it is impossible to uniquely determine the top-formula of the proof-
branch to which q belongs. Nevertheless, upon more careful consideration,

Chapter 3. Proof Theory Background 23

these q’s in the proof-branches are not the same. In the first example, q is a
sub-formula of A ⊃ (B ⊃ (C ⊃ q)), while in the second proof-branch, q is a
sub-formula of B ⊃ (D ⊃ q). If Π is a normal proof of α, then these q’s point
to different occurrences in the syntax tree of α. On the other hand, given a
syntax tree Tα of α and an atomic formula q, it is known that q is a leaf in
Tα. There can be more than one leaf labeled with q, but given a specific leaf
q, one can always determine from which top-formula it can be derived. The
following lemma states that this must be true concerning any normal proof Π.
First observe the following fact, stated here as a lemma 3.2 without any proof.
Then, as a consequence of said lemma, consider the following corollary 3.2.

Lemma 3.2. Any formula in M⊃ is of the form (α0 ⊃ (α1 ⊃ . . . (αk ⊃ q) . . .),
where q is atomic.

Corollary 3.2. If Π is a normal proof in expanded form and q is the minimal
formula of a proof-branch

−→
b then the top-formula of this proof-branch is of the

form (α0 ⊃ (α1 ⊃ . . . (αk ⊃ q) . . .), for some αi, i = 1, k.

Figure 3.1: Relating minimal formulas and leaves in the syntax tree of a
tautology

Chapter 3. Proof Theory Background 24

In any M⊃ natural deduction derivation, any application of an ⊃-
Introduction rule has a way to indicate which formula occurrences are dis-
charged by the application of this ⊃-Introduction application. One way to for-
malize this indication is to add edges (discharging edges) linking the conclusion
of the rule applies to each discharged formula occurrence in the derivation tree
that represents the natural deduction derivation3. This may be a convenient
representation in many formulations of natural deduction. However, to not
crowd the dag-like derivations with unnecessary information, these discharg-
ing edges are dropped out by assigning to each deduction-edge the string of
bits that represents the set of assumptions from which the formula that labels
the target of this deduction-edge depends on. This is formalized below.

Definition 3.3. Let α be an implicational formula, Sub(α) the set of subformu-
las of α, and O(α) = {β0, β1, . . . , βk} a linear ordering on Sub(α). A bit-string
on O(α) is any string b0b1 . . . bk, such that bi ∈ {0, 1}, for each i = 0, 1, . . . , k.

There is a bijective correspondence between bit-strings on O(α) and sets
of subformulas of α, given by Set(b0b1 . . . bk) = {βi/bi = 1}. The bit-string
on O(α) will be used to drop out the discharging edges and make explicit the
information on formula dependencies in a derivation. The set of bit-strings on
O(α) is denoted by Bits(α,O(α)). The inverse function of Set is well-defined,
for a fix ordering on Sub(α) and is denoted by Set−1. The set of all bit-strings
on a set S, under ordering OS is denoted by B(OS).

The following definition is used to argue that even when considering a
restricted form of ⊃-Intro rules (greedy), the set of theorems is not changed.
This restricted form of an ⊃-Intro is used to provide a sound way to remove
all the discharging edges from the tree-like proofs.

Definition 3.4. Consider a derivation Π of β having ∆ as assumptions. Let
α ∈ ∆ be an (open) formula assumption in Π. Applying an ⊃-Introduction in
Π is greedy, iff it produces α ⊃ β as conclusion and discharges in Π every open
occurrence of α from which its premise β depends on.

Applying an ⊃-Introduction to a tree-like derivation is greedy, if and
only if, its corresponding application in a natural deduction derivation is also
greedy [3]. Reaffirming the terminology used in [3], a proof is a derivation
that has no open assumption, i.e., all hypotheses are discharged by some ⊃-
Intro, and that a branch is a complete sub-derivation (sub-tree). In a proof,

3It can be noted that assigning unique marks (numbers, for example) to each formula
occurrence in a derivation and attach to each ⊃-Introduction application the set of marks
associated to the set of its discharged formula occurrences is equivalent to add edges
indicating these discharges.

Chapter 3. Proof Theory Background 25

every hypothesis is discharged by some ⊃-intro rule application, and hence any
branch is a complete sub-derivation (sub-tree). The algorithm below modifies
a given proof in M⊃ into a greedy proof in M⊃:

Algorithm 1 Greedy Proof Conversion
Require: A proof Π in M⊃, where n is the level of the highest branch in Π

1: j = n

2: while 0 < j do
3: for each branch B of level j in Π do
4: replace each intro-app downwards by a greedy intro-app
5: possibly discharging more formula occurrences in B
6: end for
7: j = j − 1
8: end while

In [2] the authors also demonstrate the following lemma about the above
procedure and preservation of the completeness of greedy proofs:

Lemma 3.3. Greedy ⊃-Intro is Complete: Let Π be a proof of a M⊃ formula
α. If Π′ is the result of the above procedure applied to Π, then Π′ is also a valid
proof of α in M⊃.

In [2] the authors also prove that any greedy proof of α is mapped to
a rooted, leveled, and labeled dag-like proof of α, where its root is labeled
with α. The tree-like dependency is also mapped into this initial dag-like
proof. The article also argues that HC, when applied to any dag-like proof,
preserves the logical information provided by the decorations used in the dag,
resulting in the preservation of the soundness of the dag-like proof. However,
this demonstration is lengthy and must go through multiple cases.

4
Horizontal Compression

4.1
Primary Definitions

In [2] (sections 3 and 5), in a series of hand-proven results, the authors
show that any natural deduction greedy proof of an M⊃ formula α can be
mapped to a DLDS having its root labelled with α. This DLDS represents
the underlying tree of the natural deduction greedy proof, but instanced with
all the decorations that a DLDS needs. The tree-like dependency of the natural
deduction greedy proof is also mapped into this DLDS proof.

In [2], the authors also argues that HC, when applied to any DLDS
proof, preserves the logical information provided by the decorations used in
the DLDS, resulting in the preservation of soundness of the proof. For the
purposes of this thesis, HC takes as input an arbitrary DLDS, defined as
follows:
Definition 4.1 (Dag-Like Derivability Structures). Let Γ be a set of M⊃

formulas, OΓ an arbitrary linear ordering on Γ, such that n > 0, for n ∈
OΓ, and O0

Γ = OΓ ∪ {0, λ}. A Dag-Like Derivability Structure, is a tuple
⟨V, (Ei

D)i∈O0
Γ
, EA, r, l, L, P ⟩, where:

➡ V is a non-empty set of nodes;

➡ For each i ∈ O0
Γ, Ei

D ⊆ V ×V is the family of sets of edges of deduction;

➡ EA ⊆ V × V is the set of edges of ancestrality;

➡ r ∈ V is the root of the DLDS;

➡ l : V → Γ is a function, such that, for v ∈ V , l(v) is the (formula) label
of v;

➡ L : ⋃
i∈O0

Γ

Ei
D → B(OS) is a function, such that, for every ⟨u, v⟩ ∈ Ei

D,

L(⟨u, v⟩) is the bitstring representing from which formulas the i-th
colored deduction-edge ⟨u, v⟩ carries its dependency;

➡ P : EA → {1, . . . , || Γ ||}⋆, such that, for every e ∈ EA, P (e) is a string
of the form o1; . . . ; on, where each oi, i = 1, . . . , n, is an ordinal in OΓ.

Chapter 4. Horizontal Compression 27

For each i ∈ O0
Γ and ⟨u, v⟩ ∈ Ei

D, i is called the color of the edge ⟨u, v⟩.
Each deduction-edge is coloured with formulas from Γ or the colour 0. The
colours are introduced every time a collapsing of nodes, as explained in [2], is
performed. Tree-like greedy derivations have only 0 coloured deduction edges.
DLDSs obtained from Tree-like greedy derivations by effectively collapsing
vertexes, sometimes edges, have coloured deduction edges. Not all DLDS is in
the image of the function that maps Tree-like derivations into DLDS, but any
natural deduction (usually tree-like) derivation of a formula α can be seen as
a DLDS, as shown in [2]. It is also worthy of note that every DLDS having
EA empty and only Ei

D for i = 0, i.e., a DLDS without ancestral-paths (or
ancestral-edges) and only with 0-coloured deductive edges, is a greedy tree-like
derivation1.

4.2
The Horizontal Compression Algorithm and Rules

In [2], the authors provide an algorithm, named HC, for obtaining a
compressed dag-like proof, meaning a proof represented by a Directed Acyclic
Graph, of any purely implicational minimal tautology. This dag-like proof has
more decoration elements and labels than regular proofs in purely implicational
minimal logic (M⊃) and, using these elements, a verification that the dag-like
proof is valid can be done in polynomial time [2]. The authors named this type
of dag-like proof a Dag-Like Derivability Structure (DLDS), which is defined
in [2] and also in accordance to the other definitions mentioned in this text.

The horizontal compression mentioned in the name of the algorithm is
composed of a series of horizontal collapses. A horizontal collapse applies
to a dag-like decorated greedy derivation. It aims to identify two or more
nodes in the rooted dag-like derivation at the same deduction level. The
collapsing applies from the conclusion level, namely the zero level, towards the
assumptions levels. When applied to tree-like rooted and decorated derivations,
it yields dags instead of trees. The following algorithm formally defines this
operation as a case analysis, comprised of a set of collapse rules (or compression
rules) and that applies to a dag-like derivation to yield a (new) dag-like
derivation.

1Greedy tree-like derivations are defined in [2].

Chapter 4. Horizontal Compression 28

Algorithm 2 Horizontal Compression
Require: A tree-like greedy derivation D
Ensure: That the DLDS is D compressed

1: for l from 1 to h(D) do
2: for u and v at l do
3: HCom(u, v)
4: end for
5: end for

The horizontal collapsing initially transforms tree-like derivations into
dag-like derivations. Additional structure is needed to allow us to verify that
a particular dag-like derivation is a (correct) derivation, indeed. A dag-like
derivability structure is the underlying structure used to encode dag-like
derivations. Thus, a dag-like derivation is a DLDS instance, as defined in
the above definition, and a condition that should be true about this DLDS

instance.
Figure 4.1 shows the first rule, named Rule R0IE. The figure shows

how to read the pictorial representation of each horizontal compression rule.
Both the left and the right-hand sides are subgraphs. In the left-hand side of
the rule in Figure 4.1, pi, i = 1, 3, u, v, and the two bullets (•) below them
are all pairwise different nodes in the subgraph, such that l(v) = l(u).2 The
deductive edges are in black and have as labels the bit-string representing the
dependency set denoted by L. For example, L(⟨p1, u⟩) = c̄1 shows that the
deductive edge ⟨p1, u⟩ ∈ E0

d is labeled by the dependency set Sets(c̄1). The
absence of a label on an edge indicates that the edge is unlabeled. A label’s
node is • whenever it is not relevant what is its label to read the rule. Edges
that belong to Ei

D have the colour i; this is the red ordinal number 1, . . . , n on
a black deduction edge. The members of EA, the ancestor edges, are coloured
blue, and their labels under P labelling function are red in the picture. For
example, ⟨•, p1⟩ ∈ EA and P (⟨•, p1⟩) = 1. Moreover, ⟨u, •⟩ ∈ E1

D in the graph
can be found to the right-hand side of Rule 1. Dashed black lines represent
paths in the graph composed solely of deduction edges. For the sake of clarity,
Rule R0IE is classified as a MUE-rule, for Moving Upwards Edges, because
it produces ancestral-edges arriving above the collapsed nodes.

2The reader should know that in all graphical representations of the rules, both in this
paper and in [2], nodes and edges drawn in different positions are always assumed to be
different from one another.

Chapter 4. Horizontal Compression 29

Figure 4.1: Nodes u and v before (left) and after (right) collapse HCom(u, v)

4.3
The Preservation of Soundness of the Compression Rules

Some further definitions concerning the compression rules and how they
affect a DLDS must be made. All of these definitions were taken from [2], and
are written here in order to have a more self-contained document.

Definition 4.2. Incoming Deductive Edges of a node: Given a DLDS D
of α from Γ and a node k ∈ D, the deductive in-degree of k is defined as
INS(k) = {f : f ∈ Ei

D, i ∈ O(Γ ∪ {α})0 ∧ target(f) = k}.

Definition 4.3. Outgoing Deductive Edges from a node: Given a DLDS D
of α from Γ and a node k ∈ D, the deductive out-degree of k is defined as
OUTS(k) = {f : f ∈ Ei

D, i ∈ O(Γ ∪ {α})0 ∧ source(f) = k}.

Note that for any node k, both sets, INS(k) and OUTS(k), do not take
into account the ancestor edges in their definition. Note that the members of
EA are not deductive edges. However, they play an important, though auxiliary
role in the logical reading of any DLDS. A simple observation is that there is
a natural map from a Decorated Greed Tree-Like Derivation (DGTD) to a
DLDS.

Definition 4.4. Definition 6: Let T = ⟨V, ED, Ed, r, l, L⟩ be a DGTD. Let OS

be the order on the range of l, provided by T itself and Γ the set of leaves in
T . Let Dag(T) be ⟨V, (Ei

D)i∈Oi
Γ
, EA, r, l, L, P ⟩, where E0

D = ED, Ei
D = ∅, for

all i ̸= 0 and EA = ∅, P = ∅.

It is easy to verify that Dag(T) is well-defined, and hence it is a
DLDS, for every DGTD T . Thus, there is the mapping Dag from a DGTD

to a DLDS. When reading a DGTD from top to bottom in a tree-like
Natural Deduction derivation, there is at most one path from any top-formula
occurrence to any other formula occurrence in the derivation. The following
fact is an easy consequence of Dag’s definition above.

Chapter 4. Horizontal Compression 30

Proposition 4.1. Let T be a DGTD. For every pair of nodes v and u in T ,
there is a bijection between the paths from v to u, in T , and 0-paths, i.e., using
only members of E0

D, from v to u in Dag(T). Moreover, the dependency sets,
assigned by L, in both structures, are equal for every edge ⟨v, u⟩ ∈ E0

D.

From the definition of the mapping Dag, one can see that there is no
path in the DLDS Dag(T) with colors different from 0, due to Ei

A = ∅, for
all i ̸= 0. Moreover, there are no paths in EA, for EA = ∅.
The following definition shows how the information stored in the component
P , the seventh one, the last, of any DLDS is used as a relative address for
nodes in it. It uses:
Definition 4.5. el({e}) = e and el(S) = ⊥, if S is not {a} for some a.

Definition 4.6. Relative Address of a Node: Let D be a DLDS of α from Γ
and let γ ∈ O(Γ∪ {alpha})0)⋆. Then γ is the address of a node v ∈ D relative
to a node u ∈ D iff the following algorithm 3 returns v on input γ, D and u.
The underlying idea is that γ provides information on every branching in the
path from u downwards v. Each ordinal from left to right in γ indicates which
branch to take in.

Algorithm 3 Finding a Node from its Relative Address and Origin of the
Path
Require: u, the origin, D, the DLDS, and the relative address γ

1: b← u

2: glues← γ

3: while glues ̸= ϵ do
4: if size(OUTS(b)) == 1 then
5: g ← el(OUTS(b))
6: b← target(g)
7: else if size(OUTS(b)) > 1 ∧ size({e/(e ∈ OUTS(b)) ∧ (color(e) =

head(γ))}) = 1 then
8: g ← el({e/(e ∈ OUTS(b)) ∧ (color(e) = head(γ))})
9: b← target(g)

10: glues← rest(γ)
11: else
12: Return false
13: end if
14: end while
15: Return b

The definition of Deductive Path, found below, is used to discern when
a DLDS corresponds to a valid derivation.

Chapter 4. Horizontal Compression 31

Definition 4.7. Deductive Path: Given two nodes v1 and v2 in a DLDS
D = ⟨V, (Ei

D)i∈{λ̄}∪Oi
Γ
, EA, r, l, L, P ⟩, a path e1, e2, . . . , en from v1 to v2 is called

a deductive path, iff, for each p = 1, . . . , n, ep ∈
⋃

i∈{λ̄}∪Oi
Γ

Ei
D. In particular,

if e1, e2, . . . , en is a deductive path from v1 to v2 and there is i ̸= 0, such that
ej ∈ Ei

D or ej ∈ Eλ̄
D, for some 0 ≤ j ≤ n, then the path is a mixed deductive

path from v1 to v2.

Given a DLDS D = ⟨V, (Ei
D)i∈Oi

Γ
, EA, r, l, L, P ⟩ and a node w ∈ V ,

define: Pre(w) = {v : Such that there is a deductive path from v to w}, as
the set of nodes that are linked to w by some deductive path; Top(w) =
{v : Such that v ∈ Pre(w) and either v is marked as hypothesis, or there
is no v′ ∈ V , or ⟨v′, v⟩ ∈ (Ei

D)i∈Oi
Γ
}, as the set of top nodes of a DLDS;

DedPaths(w) = {⟨e1, . . . , en⟩ : Such that e1 . . . en is a deductive path, with
source(e1) ∈ TopNode(w) and target(en) = w}, as the set of full deductive
paths reaching to w ∈ V .

Definition 4.8. Relation ∼ between Dependency Sets: For any pair of depen-
dency sets b̄ and c̄, b̄ ∼ c̄ holds, if and only if, c̄ = b̄ or c̄ = λ or b̄ = λ.

Chapter 4. Horizontal Compression 32

Definition 4.9. Given a DLDS D = ⟨V, (Ei
D)i∈Oi

Γ
, EA, r, l, L, P ⟩ and a node

w ∈ V , define Flow(D, w) as a function from Pre(w) into
℘((O0

Γ)∗ × B(OS)), such that:
Flow(D, w)(v) =

Definition 4.10. Given a structure D = ⟨V, (Ei
D)i∈Oi

Γ
, EA, r, l, L, P ⟩, it is a

valid DLDS, iff, the following conditions hold on it:

➡ Color-Acyclicity For each i ∈ Oi
Γ, Ei

D does not have cycles;

Chapter 4. Horizontal Compression 33

➡ Color-Leveled The rooted sub-dag ⟨V, (Ei
D)i∈Oi

Γ
, r⟩ is leveled;

➡ Ancestor Edges For each ⟨v1, v2⟩ ∈ EA, the level of v1 is smaller than
the level of v2;

➡ Ancestor Backway Information For each ⟨v1, v2⟩ ∈ EA, P (⟨v1, v2⟩)
is the relative address of v1 from v2;

➡ Simplicity The rooted sub-dag ⟨V, (Ei
D)i∈Oi

Γ
, r⟩ is a simple graph, i.e,

for each pair of nodes v1 and v2, there is at most an i ∈ Oi
Γ, such that

⟨v1, v2⟩ ∈ Ei
D;

➡ Ancestor-Simplicity The sub-dag ⟨V, EA⟩ is a simple graph;

➡ Non-Nested Ancestor Edges For each ⟨v1, v2⟩ ∈ EA, there is no
w in the path from v2 to v1, determined by P (⟨u, v⟩ ∈ EA), such that
⟨w, z⟩ ∈ EA, for some z ∈ EA;

➡ Correct Rule Application For each w ∈ V , Flow(D, w)(v) is well-
defined for each v ∈ Pre(w). Moreover, for each w and v, Flow(D, w)(v),
with v ∈ Pre(w), one has:

– If Flow(D, w)(v) = {(⃗b, p)} then OUT (v) = {⟨v, v′⟩} and the color
of ⟨v, v′⟩ is head(p), i.e., ⟨v, v′⟩ ∈ E

head(p)
D , and b⃗ = L(⟨v, v′⟩), and;

– If Flow(D, w)(v) ̸= ∅ and it is not a singleton either then for each
Φi = {(⃗b, p) ∈ Flow(D, w)(v) : head(p) = i}:

– If Φi ̸= ∅ then there is only one v′ ⟨v, v′⟩ ∈ Ei
D and if

Φi = {(⃗b, p)} then L(⟨v, v′⟩) = b⃗ else L(⟨v, v′⟩) = λ, and;
– If Φi = ∅ then there is no v′ ∈ V , such that, ⟨v, v′⟩ ∈ Ei

D.

Each item in this last definition is an invariance property that should
be preserved by all compression rules applications. It is worth noting that in
Correct Rule Application, the verification that a rule application is correct
involves, among other things, finding out that the premises agree with the
conclusion and checking that the dependency sets are correctly assigned, this
is the main role of function Flow.

5
Example of Horizontal Compression

A natural deduction proof of a M⊃ tautology can end in a series of ⊃-
Introduction rule applications, and it must if one considers normal proofs. The
HC algorithm collapses equal formulas in each level from the bottom up and
left to right. The final part cannot be compressed with only ⊃-Introduction,
because it already has one formula by level. So, to show smaller natural
deduction derivations, one must consider derivations without only the final
⊃-Introduction part. For example, the derivation in figure 5.1 comes from a
proof of A1 ⊃ A2 ⊃ (A1 ⊃ (A2 ⊃ A3)) ⊃ (A2 ⊃ (A3 ⊃ A4)) ⊃ (A3 ⊃ (A4 ⊃
A5)) ⊃ (A1 ⊃ A5) that that had the final ⊃-Introduction part removed.

Bitstrings are used here to represent subsets of a linearly ordered finite
set. According this, the subset {A ⊃ B, B ⊃ C, C} of the the ordered set
{A, B, C, A ⊃ B, B ⊃ C}, with order A ≺ B ≺ C ≺ A ⊃ B ≺ B ⊃ C, is
represented by 00111. This representation is given below, in definition 5.1.

Definition 5.1. Let L be a set of formulas in M⊃ and O(α) be a linear order
O(L) = {β0, β1, . . . , βk}. A bitstring on O(L) is any string b0b1 . . . bk, such that
bi ∈ {0, 1}, for each i = 1 . . . k. There is a bijective correspondence between
bitstrings on O(α) and subsets of L, given by Set(b0b1 . . . bk) = {βi/bi = 1}.

The derivation in figure 5.1 is greedy, i.e., all ⊃-Introduction rule ap-
plications concluding α ⊃ β discharge every possible occurrence of α that is
a hypothesis of the derivation of its premise, β. Natural Deduction Greedy
Derivations can be represented as labelled trees. The tree nodes are labelled
by the formulas in the derivation, and the edges are labelled by bitstrings that
represent sets of formulas. In figure 5.2, the following linear ordering ≺ on the
set of formulas that are in figure 5.1 is to be considered:

A1 ≺ A2 ≺ A3 ≺ A4 ≺ A5 ≺

≺ A1 ⊃ A2 ≺ A2 ⊃ A3 ≺ A4 ⊃ A5 ≺ A1 ⊃ A5 ≺

≺ A1 ⊃ (A2 ⊃ A3) ≺ A2 ⊃ (A3 ⊃ A4) ≺ A3 ⊃ (A4 ⊃ A5)

One can choose any linear order to represent natural deduction derivation
in the form of trees. The (fixed) linear order is used to represent sets of formulas

Chapter 5. Example of Horizontal Compression 35

as bitstrings. The linear order must be taken as part of the representation
of the greedy natural deduction tree representation. For example, the set
{A1, A1 ⊃ A2, A1 ⊃ (A2 ⊃ A3)} is represented by the bitstring 100001000100.

Figure 5.1: Deriving A1 ⊃ A5 from A1 ⊃ A2, A1 ⊃ (A2 ⊃ A3), A2 ⊃ (A3 ⊃ A4),
and A3 ⊃ (A4 ⊃ A5).

Figure 5.2: DLDS equivalent to the initial tree-like derivation.

The algorithm HC can be used to compress the derivation in figure 5.2.
The algorithm obtains smaller representations of proofs and derivations in
minimal implicational logic by applying transformation rules to a given greedy
derivation or proof that must be provided as a labelled tree, as in figure 5.2. The
rules are applied deterministically, bottom-up and left to right. The purpose
of each rule is to collapse redundant parts of the derivation. They collapse
nodes that have the same label in the same level. For example, the formula
A3 appears twice in level 31. These two occurrences of A3 are conclusions of
identical derivations. Moreover, in level 4 three repeated occurrences of A2 can
be collapsed too. It first collapses these two lower occurrences of the formula A3

using the rule depicted in figure 5.3, whose official name is R0EE. It matches
the tree in level 3 according to the markings in figure 5.4. The nodes labelled
with A3 match with u and v, in the rule, respectively, and their respective
children p1 and p4, and, p2, p3 match with the premisses in the rule accordingly.

1The root of a proof/derivation is in level zero

Chapter 5. Example of Horizontal Compression 36

Figure 5.3: MDE Compression Rule R0EE.

Figure 5.4: Collapsing of nodes u and v: Matching of R0EE.

Figure 5.5: Resulting DLDS after collapse by R0EE.

All the compression rules of HC are deterministic and used to define a
rewriting operation, HCom(u, v), that collapses two nodes, u and v that are
labeled with the same formula. Each rule has a context provided by pattern
matching and applies to a specific graph, afterwards defined as a DLDS2 D,
by the matching of its left-hand side.

2Dag-Like Decorated Structure

Chapter 5. Example of Horizontal Compression 37

The rules are named as Rimlmr, where i = 0 . . . 3 and ml, mr ∈
{I, E, H, X}, such that i is the type of the rule itself and ml/mr is type
of the left/right vertex to be collapsed. For exemple, in figure 5.3, the rule
named R0EE, collapses the conclusion of an application of the ⊃-Elimination
natural deduction rule with the conclusion of another application of the ⊃-
Elimination natural deduction rule. There are also small variations in this
naming convention, with rules such as Rv2mlmr and Re2mlmr. The indexes v

and e indicate that the respective rule collapses only vertexes (v) or vertexes
and edges (e). Rules Rv2EE, figure 5.6, and Re2EE, figure 5.8, depict these
examples. In this introductory example it is not important to understand what
a DLDS is in detail, but the fact that they represent derivations, possibly in
the form of a DAG, Directed Acyclic Graph. in the naming rule scheme, the
X represents that the formula is conclusion of more than one rule at the same
time, what is necesserilly a consequence of a previous collapse.

Figure 5.6: MDE Compression Rule Rv2EE.

Figure 5.7: MDE Compression Rule Re2EE.

Chapter 5. Example of Horizontal Compression 38

Figure 5.8: MDE Compression Rule Re2XE.

The rule R0EE is used to exemplify how to read the pictorial repre-
sentation of the compression rules of HC. The left and the right-hand sides
are subgraphs of, respectively, two DLDSs, D and D′. This rule states that
one must replace the subgraph represented by the left-hand side by the right-
hand side graph in D, resulting in D′, defined below, where •a is the left •
in the figure, while •b is the right one. In R0EE left-hand side, pi, i = 1, 3,
u and v are different nodes in the subgraph, such that v and u have the
same label(formula), the black arrows are deductive edges, which have as la-
bels the bitstring representing the dependency set denoted by L. For example,
L(⟨p1, u⟩) = c̄1 shows that the deductive edge ⟨p1, u⟩ ∈ E0

d is labeled by the
dependency set Sets(c̄1). The absence of a label on an edge indicates that it is
irrelevant to the pattern. A label’s node is • whenever it is not relevant what
is its label to read the rule. In this case, the • is also used to denote the node.
•s label different nodes unless explicitly stated by the rule. In figure 5.3, the
bullets label different nodes. In the set-theoretical semantics of the rules, •a

and •b are references to each of the two different nodes [2]. Edges that belong
to Ei

D have the colour i; this is the red ordinal3 number 1, . . . , n on a black
deduction edge. The members of EA, the ancestor edges, are coloured blue,
and their labels under P labelling function are red in the picture. For exam-
ple, ⟨•, p1⟩ ∈ EA and P (⟨•, p1⟩) = 1. Moreover, one has that ⟨u, •⟩ ∈ E1

D in
the graph on the right-hand side of R0EE. A DLDS D is specified by a set
of nodes V , and multiple sets of deductive edges, Ei

D ⊆ V ×V , i = 0, n, called
coloured edges, and a set of ancestor edges EA ⊆ V × V , plus some labelling
functions. The label λ will be assigned to some edges, i.e., those belonging to
Eλ

D. The members of Eλ
D are edges that must have the dependency set calcu-

3Note that the formulas themselves can be used as ordinal numbers in this case since
they are linearly ordered

Chapter 5. Example of Horizontal Compression 39

lated by the validation verification algorithm that verifies if a DLDS is valid
[2]. Moreover, a node on the left-hand side must show all the edges,incoming
and outgoing. If no edge is drawn, then the node does not appear in the rule.

In a natural deduction derivation, the correct and logical reading starts
in the hypothesis and follows down the conclusion analysing the changing of
dependency sets obtained by each rule application. The path downwards is the
path that links a node to its parent, the latter to its respective parent and so
on. In a dag, the correct reading is a bit more involving. The result of the
application of R0EE, in figure 5.3, to the match in figure 5.4 is depicted in
figure 5.5. The matching is represented by ellipses around the nodes that are
bullets in the rule (R0EE) representation instead of the original rectangles.
After the application, the matching is still present to us appreciate the effect
of the application of R0EE. This focus is removed in figure 5.9, showing the
derivation resulting from rule R0EE application, ready to be used in a new
matching by the application of a new rule.

Figure 5.9: Defocused DLDS from figure 5.5.

One should observe that the graph in this figure, resulting from a node
application collapse, is no longer a tree. It is represented by a dag. The
collapsed node labelled by the formula A3 has out-degree 2, i.e., has two
outcoming edges labelled with 1 and 2, in red, respectively, besides their
respective dependency sets as bitstrings. Labels 1 and 2 inform which path
a derivation validation algorithm should follow to have the correct logical
dependency from the conclusion to the hypothesis. The path that must be
followed from a given node v to obtain the correct reading is given by the label
of the ancestor edge incident in v. If there is no ancestor edge incident in a
node, then the correct reading is to follow the parenthood path. For example,
in figure 5.5, the list [0, 2], in red, labels the edges that go from the node
labelled with A4 ⊃ A5 to the labelled nodes A2 and A2 ⊃ A3, respectively.

Chapter 5. Example of Horizontal Compression 40

[0, 2] is the path to follow from A2 to A4 ⊃ A5 passing by A3. The same can be
said about the path from A2 ⊃ A3 to A4 ⊃ A5. These two paths are the only
ones present in the tree-like derivation from these two nodes, labelled with
A2 and A2 ⊃ A3 to A4 ⊃ A5, respectively. Hence, the ancestor edges drive
the correct reading of the dag-like derivation regarding the original tree-like
derivation before applying the collapsing rules. A reading algorithm reads and
validates a dag-like derivation [2]. One should note that the correct paths are
preserved after the R0EE application, indicating the soundness of the R0EE.

The following collapse from the bottom up involves three A2-labeled
nodes in level 44. The first collapse considers the first two occurrences of A2,
from left to right in the dag. The second leftmost A2 is the minor premise of
a ⊃-Elimination with A2 ⊃ (A3 ⊃ A4) as major premise. The rule Rv2EE, in
figure 5.6, is applied to the current dag-like deduction in figure 5.9. Figure 5.11
is a graphical rearrangement of this same dag-like derivation, only to have a
more evident matching of Rv2EE, in figure 5.10.

Figure 5.10: Collapsing of nodes u and v: Matching of Rv2EE to the DLDS
at figure 5.9.

Figure 5.11: Rearrangement of the DLDS at figure 5.10.
4The HC algorithm always deals with levelled dag-like derivations.

Chapter 5. Example of Horizontal Compression 41

Figure 5.12: Resulting DLDS after applying Rv2EE to the DLDS at fig-
ure 5.11.

From this point on, the derivation depicted in figure 5.15 is provide by
applying the rules R_e2XE, shown in figure 5.8, and Re2EE, shown in figure
5.7, to the DLDS at 5.12. The dag-like derivation in figure 5.15 has nodes
labelled with the same formula only at the top formulas, i.e., hypothesis or
top-formulas. In this case, the four occurrences of A1 and the three occurrences
of A1 ⊃ A2. Moreover, it is a simple directed and coloured graph, i.e., for each
colour c and pair u and v of nodes, there is at most one edge of colour c from
u to v. Suppose that the top formulas are not to be counted. Then, in that
case, the obtained dag-like derivation is of size h.m3, where h is the height
of the original tree-like natural deduction derivation and m is the number of
formulas in the original derivation5.

Figure 5.13: Collapsing of nodes u and v: Matching of Re2XE to the DLDS
at 5.12.

5Refer to [2] for more detail.

Chapter 5. Example of Horizontal Compression 42

Figure 5.14: Collapsing of nodes u and v: Matching of Re2EE to the DLDS
at 5.12.

Figure 5.15: Resulting DLDS after applying Re2XE and Re2EE to the
DLDS at 5.12.

The next, and final, step in the compression task is to collapse the top
formulas. The Moving Downward Edges rules (MDE-rules) are used for this
task. The application of the MDE-rules moves the ancestor edges down, but
preserves the number of ancestor edges, so that there is at most one top formula
by level at the end of the compression process, and the same number of edges
counted above. One should conclude that the dag-like proof is polynomial on
the number of formulas and the height of the tree-like derivation. Do note that
some ancestor edges are redundant, and could also be collapsed and eliminated.
This happens whenever they connect the same two nodes and have the same

Chapter 5. Example of Horizontal Compression 43

label, meaning they describe the same path between these two nodes. Since this
is the case for any two such ancestor edges, then HC ends exiting a polynomial
DLDS[2].

Figure 5.16: Summary of the MDE applications to the initial derivation.

Chapter 5. Example of Horizontal Compression 44

Figure 5.17: Summary of the MUE applications to the initial derivation.

6
Formalisation in Lean

This chapter describes the formalization done in Lean (lean4 v0.0.140)
for the proof of the following theorem:

Theorem 6.1 (MUE Coverage and Soundness of the HC Algorithm). Let
HCom(u, v) be the application of a MUE-rule nodes u and v of a DLDS
DLDS. Let uv be the resulting collapsed node and CLPS ′ the resulting DLDS
after the collapse of nodes u and v. If so, then uv, any child-node u1 of u and
any child-node v1 of v all respect the Type Hierarchy of u and v at CLPS.

6.1
Type Definitions

As the proof is about the compression rules that define HCom(u, v), it
is necessary to create a type for the entries u and v. In this context, u and v

indicate the nodes to be collapsed by the application of HCom(u, v). However,
the information of which nodes u and v represent is insufficient for this proof.
Not only the nodes to be collapsed, all neighboring arrows and vertexes around
the nodes u and v must be known. The neighborhood type is directly defined
by the compression rules, and composed of 4 distinct parts: a central node
which is used for the collapse (CENTER); a list of deduction edges arriving
at that central node (IN); a list of deduction edges exiting from that central
node (OUT); and a list of edges of ancestrality pertinent to the compression
rule (ANCESTRAL). These parts are given as parameter to the neighborhood
type constructor. The types of these parameters are the node, deduction, and
ancestral types.

15 /- DLDS: Labels -/
16 inductive Formula where
17 | atom (SYMBOL : String) : Formula
18 | implication (ANTECEDENT CONSEQUENT : Formula) : Formula
19 export Formula (atom implication)
20 prefix:max "#" => Formula.atom
21 infixl:66 ">>" => Formula.implication
22 def Formula.repr (FORMULA : Formula) : String :=
23 match FORMULA with
24 | (atom SYMBOL) => "#" ++ SYMBOL
25 | (implication ANTECEDENT CONSEQUENT) => (Formula.repr ANTECEDENT) ++ ">>" ++

(Formula.repr CONSEQUENT)↪→

26 instance : Repr Formula where reprPrec formula _ := Formula.repr formula

Chapter 6. Formalisation in Lean 46

27 /- DLDS: Vertices -/
28 structure Vertex where
29 node :: (NUMBER : Nat)
30 (LEVEL : Nat)
31 (FORMULA : Formula)
32 (HYPOTHESIS : Bool)
33 (COLLAPSED : Bool)
34 (PAST : List Nat) /- Temporary Collapse Metadata -/
35 deriving Repr
36 export Vertex (node)
37 /- DLDS: Deduction Edges -/
38 structure Deduction where
39 edge :: (START : Vertex)
40 (END : Vertex)
41 (COLOUR : Nat)
42 (DEPENDENCY : List Formula)
43 deriving Repr
44 export Deduction (edge)
45 /- DLDS: Ancestral Paths -/
46 structure Ancestral where
47 path :: (START : Vertex)
48 (END : Vertex)
49 (COLOURS : List Nat)
50 deriving Repr
51 export Ancestral (path)
52 /- DLDS: Graph -/
53 structure Graph where
54 dlds :: (NODES : List Vertex)
55 (EDGES : List Deduction)
56 (PATHS : List Ancestral)
57 deriving Repr
58 export Graph (dlds)
59 /- DLDS: Neighborhoods -/
60 structure Neighborhood where
61 rule :: (CENTER : Vertex)
62 (INCOMING : List Deduction)
63 (OUTGOING : List Deduction)
64 (DIRECT : List Ancestral)
65 (INDIRECT : List Ancestral)
66 deriving Repr
67 export Neighborhood (rule)

Source Code 6.1: Type definitions in Lean for the Dag-Like Derivability
Structure (DLDS).

In the node type’s definition, a node’s level and label (an identifier
unique to that node) are each represented by a natural number, which must be
given as parameters to the type constructor. This representation is justifiable
because the number of possible levels/labels in a DLDS is always a natural
number, so any arbitrary ordering over the set of possible levels/labels creates
a bijection between the set of levels/labels and the natural numbers. The
level parameter of a node is used to associate nodes of the DLDS for
collapse, and check if they are at the same level of the DLDS. Using a
parameter to represent the label of a node makes it possible to differentiate

Chapter 6. Formalisation in Lean 47

any two nodes of the tree even when looked at in isolation. On each collapsed
node is also kept information about the nodes collapsed into it; permanently
when there is no size conflict or temporarily if there is. These parameters
allow for a better, more precise categorization of the nodes, something which
the proof requires. The last part of a node is its formula, which in this
context is a M⊃ formula, defined as formula. The deduction type is used
to instantiate a neighborhood’s deduction edges while the ancestral type is
used to instantiate a neighborhood’s edges of ancestrality. A deduction edge
is composed of: a starting node (START); an end node (END); an identifying
colour (COLOUR); and a dependency set (DEPENDENCY). An ancestral-
path is composed of: a starting node (START); an end node (END); and an
identifying colour path (PATH). The formalisation of both these types is taken
as a direct translation from their definition as stated in the previous sections.

6.2
Proving the Main Theorem

Central to the Lean-assisted proof, contained at [1], is the concept of the
Type Hierarchy, given as follows:

➡ type0_elimination, 6.2 which validates if a given neighborhood of the
DLDS represents a non-collapsed node that is the conclusion of an
application of ⊃-Elimination, as it was in the original tree-like proof,
with a non-collapsed parent-node or incoming ancestral-paths;

265 def type0_elimination (RULE : Neighborhood) : Prop :=
266 (RULE.CENTER.NUMBER > 0) ∧ (RULE.CENTER.LEVEL > 0) ∧ (RULE.CENTER.HYPOTHESIS = false

)↪→

267 ∧ (RULE.CENTER.COLLAPSED = false) ∧ (RULE.CENTER.PAST = [])
268 ∧ (∃(inc_nbr out_nbr : Nat),
269 ∃(antecedent out_fml : Formula),
270 ∃(major_hpt minor_hpt : Bool),
271 ∃(major_dep minor_dep : List Formula),
272 --
273 (inc_nbr > 0) ∧ (out_nbr > 0)
274 ∧ RULE.INCOMING = [edge (node (inc_nbr+1) (RULE.CENTER.LEVEL+1)

(antecedent>>RULE.CENTER.FORMULA) major_hpt false []) /- Left Child & Major Premise
-/

↪→

↪→

275 RULE.CENTER
276 0
277 #major_dep,
278 edge (node inc_nbr (RULE.CENTER.LEVEL+1) antecedent minor_hpt false

[]) /- Right Child & Minor Premise -/↪→

279 RULE.CENTER
280 0
281 #minor_dep]
282 ∧ RULE.OUTGOING = [edge RULE.CENTER
283 (node out_nbr (RULE.CENTER.LEVEL-1) out_fml false false [])
284 0

Chapter 6. Formalisation in Lean 48

285 (minor_dep ∪ major_dep)]
286 ∧ RULE.DIRECT = []
287 ∧ RULE.INDIRECT = [])

Source Code 6.2: Type-0 Elimination method definition in Lean.

➡ type0_introduction, 6.3 which validates if a given neighborhood of
the DLDS represents a non-collapsed node that is the conclusion of an
application of ⊃-Introduction, as it was in the original tree-like proof,
with a non-collapsed parent-node or incoming ancestral-paths;

290 def type0_introduction (RULE : Neighborhood) : Prop :=
291 (RULE.CENTER.NUMBER > 0) ∧ (RULE.CENTER.LEVEL > 0) ∧ (RULE.CENTER.HYPOTHESIS = false

)↪→

292 ∧ (RULE.CENTER.COLLAPSED = false) ∧ (RULE.CENTER.PAST = [])
293 ∧ (∃(inc_nbr out_nbr : Nat),
294 ∃(antecedent consequent out_fml : Formula),
295 ∃(inc_dep : List Formula),
296 --
297 (RULE.CENTER.FORMULA = antecedent>>consequent)
298 ∧ (inc_nbr > 0) ∧ (out_nbr > 0)
299 ∧ RULE.INCOMING = [edge (node inc_nbr (RULE.CENTER.LEVEL+1) consequent false false [])

/- Unique Child & Sole Premise -/↪→

300 RULE.CENTER
301 0
302 #inc_dep]
303 ∧ RULE.OUTGOING = [edge RULE.CENTER
304 (node out_nbr (RULE.CENTER.LEVEL-1) out_fml false false [])
305 0
306 (inc_dep - [antecedent])]
307 ∧ RULE.DIRECT = []
308 ∧ RULE.INDIRECT = [])

Source Code 6.3: Type-0 Introduction method definition in Lean.

➡ type0_hypothesis, 6.4 which validates if a given neighborhood of the
DLDS represents a non-collapsed node that is a hypothesis, as it was in
the original tree-like proof, with a non-collapsed parent-node or incoming
ancestral-paths;

311 def type0_hypothesis (RULE : Neighborhood) : Prop :=
312 (RULE.CENTER.NUMBER > 0) ∧ (RULE.CENTER.LEVEL > 0) ∧ (RULE.CENTER.HYPOTHESIS = true

)↪→

313 ∧ (RULE.CENTER.COLLAPSED = false) ∧ (RULE.CENTER.PAST = [])
314 ∧ (∃(out_nbr : Nat),
315 ∃(out_fml : Formula),
316 --
317 (out_nbr > 0)
318 ∧ RULE.INCOMING = []
319 ∧ RULE.OUTGOING = [edge RULE.CENTER
320 (node out_nbr (RULE.CENTER.LEVEL-1) out_fml false false [])
321 0
322 [RULE.CENTER.FORMULA]]
323 ∧ RULE.DIRECT = []
324 ∧ RULE.INDIRECT = [])

Chapter 6. Formalisation in Lean 49

Source Code 6.4: Type-0 Hypothesis method definition in Lean.

➡ type1_pre_collapse, 6.5 which validates if a given neighborhood of the
DLDS represents a pre-collapsed node that is the preview of the future
collapse of a type-0 node;

➡ type1_collapse, 6.6 which validates if a given neighborhood of the
DLDS represents a collapsed node resulting from the collapse: of a type-
0 and a type-0; or a type-1 and a type-0 nodes;

532 def type1_pre_collapse (RULE : Neighborhood) : Prop :=
533 /- Check Center -/ --
534 ((RULE.CENTER.NUMBER > 0) ∧ (RULE.CENTER.LEVEL > 0)
535 ∧ (RULE.CENTER.COLLAPSED = false)
536 ∧ (RULE.CENTER.PAST = [])
537 /- Check Deduction Edges -/ ---
538 ∧ ((RULE.INCOMING = []) ↔ (RULE.CENTER.HYPOTHESIS = true))
539 ∧ (List.length (RULE.INCOMING) ≤ 2)
540 ∧ (∃(out : Deduction), (RULE.OUTGOING = [out]))
541 ∧ (∀{OUT1 OUT2 : Deduction}, (OUT1 ∈ RULE.OUTGOING) →
542 (OUT2 ∈ RULE.OUTGOING) →
543 (OUT1.COLOUR > 0 ∨ OUT2.COLOUR > 0) →
544 ((OUT1.COLOUR = OUT2.COLOUR) ↔ (OUT1 = OUT2)))
545 /- Check Ancestral Paths -/ ---
546 ∧ (RULE.DIRECT = [])
547 ∧ (∀{ind1 ind2 : Ancestral}, (ind1 ∈ RULE.INDIRECT) →
548 (ind2 ∈ RULE.INDIRECT) → ((ind1.COLOURS = ind2.COLOURS

) ↔ (ind1.START = ind2.START)))↪→

549 ∧ (List.length (RULE.INDIRECT) = List.length (RULE.INCOMING))
550 ∧ (∀{ind : Ancestral}, (ind ∈ RULE.INDIRECT) → (ind.COLOURS = [0,

RULE.CENTER.NUMBER]))↪→

551 /- Generic Properties -/ --
552 ∧ (type_incoming RULE) ∧ (type_outgoing1 RULE)
553 ∧ (type_indirect RULE))

Source Code 6.5: Type-1 Pre-Collapse method definition in Lean.

556 def type1_collapse (RULE : Neighborhood) : Prop :=
557 /- Check Center -/ --
558 ((RULE.CENTER.NUMBER > 0) ∧ (RULE.CENTER.LEVEL > 0)
559 ∧ (RULE.CENTER.COLLAPSED = true)
560 ∧ (∃(past : Nat)(pasts : List Nat), (check_numbers (past::pasts))
561 ∧ (RULE.CENTER.PAST = (past::pasts)))
562 /- Check Deduction Edges -/ ---
563 ∧ ((RULE.INCOMING = []) → (RULE.CENTER.HYPOTHESIS = true))
564 ∧ (∃(out : Deduction)(outs : List Deduction), (RULE.OUTGOING = (out::outs)))
565 ∧ (∀{OUT1 OUT2 : Deduction}, (OUT1 ∈ RULE.OUTGOING) →
566 (OUT2 ∈ RULE.OUTGOING) →
567 (OUT1.COLOUR > 0 ∨ OUT2.COLOUR > 0) →
568 ((OUT1.COLOUR = OUT2.COLOUR) ↔ (OUT1 = OUT2)))
569 /- Check Ancestral Paths -/ ---
570 ∧ (RULE.DIRECT = [])
571 ∧ (List.length (RULE.INDIRECT) = List.length (RULE.INCOMING))

Chapter 6. Formalisation in Lean 50

572 ∧ (∀{ind : Ancestral}, (ind ∈ RULE.INDIRECT) → (∃(colour : Nat), (ind.COLOURS = [0,
colour])))↪→

573 /- Generic Properties -/ --
574 ∧ (type_incoming RULE) ∧ (type_outgoing1 RULE)
575 ∧ (type_indirect RULE))

Source Code 6.6: Type-1 Collapse method definition in Lean.

➡ type2_elimination, 6.7 which validates if a given neighborhood of the
DLDS represents a non-collapsed node that is the conclusion of an
application of ⊃-Elimination, but not as it was in the original tree-like
proof, with a collapsed parent-node and a single incoming ancestral-path;

328 def type2_elimination (RULE : Neighborhood) : Prop :=
329 (RULE.CENTER.NUMBER > 0) ∧ (RULE.CENTER.LEVEL > 0) ∧ (RULE.CENTER.HYPOTHESIS = false

)↪→

330 ∧ (RULE.CENTER.COLLAPSED = false) ∧ (RULE.CENTER.PAST = [])
331 ∧ (∃(inc_nbr out_nbr anc_nbr anc_lvl : Nat),
332 ∃(antecedent out_fml anc_fml : Formula),
333 ∃(major_hpt minor_hpt out_hpt : Bool),
334 ∃(major_dep minor_dep : List Formula),
335 ∃(past colour : Nat)(pasts colours : List Nat),
336 --
337 (inc_nbr > 0) ∧ (out_nbr > 0)
338 ∧ (anc_nbr > 0) ∧ (anc_lvl + List.length (0::colour::colours) = RULE.CENTER.LEVEL)
339 ∧ (colour ∈ (out_nbr::past::pasts)) ∧ (check_numbers (past::pasts)) ∧ (

check_numbers (colour::colours))↪→

340 ∧ RULE.INCOMING = [edge (node (inc_nbr+1) (RULE.CENTER.LEVEL+1)
(antecedent>>RULE.CENTER.FORMULA) major_hpt false []) /- Right Child & Major Premise
-/

↪→

↪→

341 RULE.CENTER
342 0
343 #major_dep,
344 edge (node inc_nbr (RULE.CENTER.LEVEL+1) antecedent minor_hpt false

[]) /- Left Child & Minor Premise -/↪→

345 RULE.CENTER
346 0
347 #minor_dep]
348 ∧ RULE.OUTGOING = [edge RULE.CENTER
349 (node out_nbr (RULE.CENTER.LEVEL-1) out_fml out_hpt true

(past::pasts))↪→

350 0
351 (minor_dep ∪ major_dep)]
352 ∧ RULE.DIRECT = [path (node anc_nbr anc_lvl anc_fml false false [])
353 RULE.CENTER
354 (0::colour::colours)]
355 ∧ RULE.INDIRECT = [])

Source Code 6.7: Type-2 Elimination method definition in Lean.

➡ type2_introduction, 6.8 which validates if a given neighborhood of
the DLDS represents a non-collapsed node that is the conclusion of an
application of ⊃-Introduction, but not as it was in the original tree-like
proof, with a collapsed parent-node and a single incoming ancestral-path;

Chapter 6. Formalisation in Lean 51

358 def type2_introduction (RULE : Neighborhood) : Prop :=
359 (RULE.CENTER.NUMBER > 0) ∧ (RULE.CENTER.LEVEL > 0) ∧ (RULE.CENTER.HYPOTHESIS = false

)↪→

360 ∧ (RULE.CENTER.COLLAPSED = false) ∧ (RULE.CENTER.PAST = [])
361 ∧ (∃(inc_nbr out_nbr anc_nbr anc_lvl : Nat),
362 ∃(antecedent consequent out_fml anc_fml : Formula),
363 ∃(out_hpt : Bool),
364 ∃(inc_dep : List Formula),
365 ∃(past colour : Nat)(pasts colours : List Nat),
366 --
367 (RULE.CENTER.FORMULA = antecedent>>consequent)
368 ∧ (inc_nbr > 0) ∧ (out_nbr > 0)
369 ∧ (anc_nbr > 0) ∧ (anc_lvl + List.length (0::colour::colours) = RULE.CENTER.LEVEL)
370 ∧ (colour ∈ (out_nbr::past::pasts)) ∧ (check_numbers (past::pasts)) ∧ (

check_numbers (colour::colours))↪→

371 ∧ RULE.INCOMING = [edge (node inc_nbr (RULE.CENTER.LEVEL+1) consequent false false [])
/- Unique Child & Sole Premise -/↪→

372 RULE.CENTER
373 0
374 #inc_dep]
375 ∧ RULE.OUTGOING = [edge RULE.CENTER
376 (node out_nbr (RULE.CENTER.LEVEL-1) out_fml out_hpt true

(past::pasts))↪→

377 0
378 (inc_dep - [antecedent])]
379 ∧ RULE.DIRECT = [path (node anc_nbr anc_lvl anc_fml false false [])
380 RULE.CENTER
381 (0::colour::colours)]
382 ∧ RULE.INDIRECT = [])

Source Code 6.8: Type-2 Introduction method definition in Lean.

➡ type2_hypothesis, 6.9 which validates if a given neighborhood of the
DLDS represents a non-collapsed node that is a hypothesis, but not as
it was in the original tree-like proof, with a collapsed parent-node and a
single incoming ancestral-path;

385 def type2_hypothesis (RULE : Neighborhood) : Prop :=
386 (RULE.CENTER.NUMBER > 0) ∧ (RULE.CENTER.LEVEL > 0) ∧ (RULE.CENTER.HYPOTHESIS = true

)↪→

387 ∧ (RULE.CENTER.COLLAPSED = false) ∧ (RULE.CENTER.PAST = [])
388 ∧ (∃(out_nbr anc_nbr anc_lvl : Nat),
389 ∃(out_fml anc_fml : Formula),
390 ∃(out_hpt : Bool),
391 ∃(past colour : Nat)(pasts colours : List Nat),
392 --
393 (out_nbr > 0)
394 ∧ (anc_nbr > 0) ∧ (anc_lvl + List.length (0::colour::colours) = RULE.CENTER.LEVEL)
395 ∧ (colour ∈ (out_nbr::past::pasts)) ∧ (check_numbers (past::pasts)) ∧ (

check_numbers (colour::colours))↪→

396 ∧ RULE.INCOMING = []
397 ∧ RULE.OUTGOING = [edge RULE.CENTER
398 (node out_nbr (RULE.CENTER.LEVEL-1) out_fml out_hpt true

(past::pasts))↪→

Chapter 6. Formalisation in Lean 52

399 0
400 [RULE.CENTER.FORMULA]]
401 ∧ RULE.DIRECT = [path (node anc_nbr anc_lvl anc_fml false false [])
402 RULE.CENTER
403 (0::colour::colours)]
404 ∧ RULE.INDIRECT = [])

Source Code 6.9: Type-2 Hypothesis method definition in Lean.

➡ type3_pre_collapse, 6.10 which validates if a given neighborhood of
the DLDS represents a pre-collapsed node that is the preview of the
future collapse of a type-2 node;

➡ type3_collapse, 6.11 which validates if a given neighborhood of the
DLDS represents a collapsed node resulting from the collapse of: a type-
0 and a type-0; or a type-0 and a type-2; or a type-2 and a type-0; or a
type-2 and a type-2; or a type-1 and a type-0; or a type-1 and a type-2;
or a type-3 and a type-0; or a type-3 and a type-2 nodes.

579 def type3_pre_collapse (RULE : Neighborhood) : Prop :=
580 /- Check Center -/ --
581 ((RULE.CENTER.NUMBER > 0) ∧ (RULE.CENTER.LEVEL > 0)
582 ∧ (RULE.CENTER.COLLAPSED = false)
583 ∧ (RULE.CENTER.PAST = [])
584 /- Check Deduction Edges -/ ---
585 ∧ ((RULE.INCOMING = []) ↔ (RULE.CENTER.HYPOTHESIS = true))
586 ∧ (List.length (RULE.INCOMING) ≤ 2)
587 ∧ (∃(out : Deduction), (RULE.OUTGOING = [out]))
588 ∧ (∀{OUT1 OUT2 : Deduction}, (OUT1 ∈ RULE.OUTGOING) →
589 (OUT2 ∈ RULE.OUTGOING) →
590 (OUT1.COLOUR > 0 ∨ OUT2.COLOUR > 0) →
591 ((OUT1.COLOUR = OUT2.COLOUR) ↔ (OUT1 = OUT2)))
592 /- Check Ancestral Paths -/ ---
593 ∧ ((RULE.CENTER.HYPOTHESIS = false) → (RULE.DIRECT = []))
594 ∧ ((RULE.DIRECT ̸= []) → (RULE.CENTER.HYPOTHESIS = true))
595 ∧ ((RULE.DIRECT = []) ∨ (∃(dir : Ancestral), (RULE.DIRECT = [dir])))
596 ∧ (∀{ind1 ind2 : Ancestral}, (ind1 ∈ RULE.INDIRECT) →
597 (ind2 ∈ RULE.INDIRECT) → ((ind1.COLOURS = ind2.COLOURS

) ↔ (ind1.START = ind2.START)))↪→

598 ∧ (List.length (RULE.INDIRECT) = List.length (RULE.INCOMING))
599 /- Generic Properties -/ --
600 ∧ (type_incoming RULE) ∧ (type_outgoing3 RULE)
601 ∧ (type_direct RULE) ∧ (type_indirect RULE))

Source Code 6.10: Type-3 Pre-Collapse method definition in Lean.

604 def type3_collapse (RULE : Neighborhood) : Prop :=
605 /- Check Center -/ --
606 ((RULE.CENTER.NUMBER > 0) ∧ (RULE.CENTER.LEVEL > 0)
607 ∧ (RULE.CENTER.COLLAPSED = true)
608 ∧ (∃(past : Nat)(pasts : List Nat), (check_numbers (past::pasts))
609 ∧ (RULE.CENTER.PAST = (past::pasts)))

Chapter 6. Formalisation in Lean 53

610 /- Check Deduction Edges -/ ---
611 ∧ ((RULE.INCOMING = []) → (RULE.CENTER.HYPOTHESIS = true))
612 ∧ (∃(out : Deduction)(outs : List Deduction), (RULE.OUTGOING = (out::outs)))
613 ∧ (∀{OUT1 OUT2 : Deduction}, (OUT1 ∈ RULE.OUTGOING) →
614 (OUT2 ∈ RULE.OUTGOING) →
615 (OUT1.COLOUR > 0 ∨ OUT2.COLOUR > 0) →
616 ((OUT1.COLOUR = OUT2.COLOUR) ↔ (OUT1 = OUT2)))
617 /- Check Ancestral Paths -/ ---
618 ∧ ((RULE.CENTER.HYPOTHESIS = false) → (RULE.DIRECT = []))
619 ∧ ((RULE.DIRECT ̸= []) → (RULE.CENTER.HYPOTHESIS = true))
620 ∧ (List.length (RULE.INDIRECT) = List.length (RULE.INCOMING))
621 /- Generic Properties -/ --
622 ∧ (type_incoming RULE) ∧ (type_outgoing3 RULE)
623 ∧ (type_direct RULE) ∧ (type_indirect RULE))

Source Code 6.11: Type-3 Collapse method definition in Lean.
As a consequence of the above, if the subset of MUE-rules of HC is

applied to a valid DLDS, then one can be certain that it eventually halts
exiting a DLDS that has no level with two nodes labelled with the same
formula, aside from its top-formulas. From the Main Theorem 6.1, take that
every matching involving a collapsed node resulting from the application of a
type-0 or type-1 rule will be mapped by a type-1 rule. Similarly, every matching
involving a collapsed node resulting from the application of a type-0, type-1,
type-2 or type-3 rule will be mapped by a type-3 rule. The inductive part of
the proof, which states that any child-node of a collapsed node also obeys the
Type Hierarchy, similarly states that non-collapsed nodes go from being type-0
to being type-2 nodes after the collapse of their parent-node. So long as there
is a MUE-rule among the compression rules that maps the matching nodes,
HC will collapse them. Therefore, HC will not halt before collapsing every
node aside for the top-formulas.

➡ check_collapse_nodes, [1], which checks if the neighborhoods of two
given nodes are valid targets for the collapse of those nodes;

➡ check_collapse_edges, [1], which checks if the neighborhoods of two
given nodes are valid targets for the collapse of those nodes and the one
outgoing edge those nodes have in common;

➡ pre_collapse, [1], which takes one applicable neighborhood and exits a
pre-collapsed neighborhood;

➡ collapse, [1], which takes two applicable neighborhoods and exits a
collapsed neighborhood; and

➡ Graph.is_collapse, [1], which indicates the new DLDS after the
collapse of two given nodes.

7
Future Work

With the intent of expanding the work presented in this article, based
on the conclusions and on the insights taken in the course of its making,
some focuses in regards to the future developments of this work should be
proposed. First and foremost, it is my intention to continue writing the Lean-
assisted proof, now including the coverage and soundness of the MDE subset
of compression rules. After this, the next step is to formalise the result that
the final, fully-compressed DLDS resulting of an application of HC, up to
and including all top-formulas, preserves the validity of the original tree-like
derivation, via the preservation of Flow, as alluded to in Theorem 11 in [2].
This will, in all regards, finish a complete Lean-assisted proof for the coverage
and soundness of HC.

Aside from this more natural continuation, perhaps even to be done in
parallel to it, is the exploration of a formalisation about other properties of
HC, besides coverage and soundness, such as the proof of the compression rate.
Work in this regard should add to the discussion about CoNP = NP , in favor
and corroborating the result. Another possible development would be to look
into other viable and relevant applications of HC. These such applications,
like for the proofs of non-Hamiltonicity for non-Hamiltonian graphs, shown in
[11], could yield interesting insights.

Lastly, with the current formalisation as a basis, fully-implementing HC
in Lean is also an option. To that effect, such an implementation would make
the Lean-assisted proof much more accessible in and of itself. A reader still
skeptical of the Lean-assisted proof, could be more easily persuaded of its
semantical significance by following the execution of HC with a concrete
example, as defined by the formalisation.

8
Conclusion

The goal of this work is to convince the reader that HC halts for every
M⊃ tautology, exiting a valid DLDS with no two equal nodes on the same
level, aside from the top-formulas. To that end, a proof of the coverage and
soundness of the MUE subset of compression rules of HC was shown.

During the formalisation in Lean, finding succinct enough concepts and
data-types to define a DLDS was a particular challenge, especially on the
early stages. An argument could be made that this characteristic is due to
the nature of the tree type, of which a DLDS is based, which is not at all
intuitive when defining the DLDS as a graph in Lean. A DLDS, similarly to
a tree-like proof, has levels over which recursion and induction can be applied.
This, though extremely important for some aspects of the proof, is also not at
all needed to prove other parts of the result. Thus, defining an adjacent type,
the neighborhood type, allowed me to work with a type which has a much
more direct definition based on the compression rules, instead of a DLDS
type, when required.

One thing that also became apparent along the process of formalisation,
was how difficult it is to sometimes formalize succinct, sometimes even simple
concepts and definitions regarding some data-types, like trees and graphs, and
processes, like the derivation rules of M⊃. For example, the fact that the set of
nodes in a connected graph has a strong correlation to its set of edges, or that
the formula labelling a node of a dag-like derivation is restricted in relation to
the formulas labelling its own node’s child and parent node(s).

It is also worth repeating that the assisted proof did not end up as a 1-to-1
translation of the proofs shown in [2]. Something similar also happened during
the previous work at [8], to the point that, after also looking into other works
done in the field of formal verification, it would seem that this is a common
occurrence. An assisted proof, by all means, must be capable of standing on
its own merits. Neither it needs nor it benefits from being the perfect copy of
another proof, which is what any pen-and-paper proof of its same result would
be: another proof. Formal verification and interactive/assisted theorem proving
present their own advantages and disadvantages in relation to more traditional
proofs, and it is perfectly normal for different means to yield different products.

Bibliography

[1] FILHO, R.C.M.B., Horizontal-Compression: A lean-assisted proofs
about properties of the hc algorithm (2023).
URL https://github.com/Robilsu/Horizontal-Compression

[2] HAEUSLER, E.H.; JÚNIOR, J.F.C.B.; FILHO, R.C.M.B., On the hor-
izontal compression of dag-derivations in minimal purely impli-
cational logic (arXiv:2206.02300,2023).
URL https://arxiv.org/abs/2206.02300

[3] PRAWITZ, D., Natural Deduction: Proof-Theoretical Study,
Dover Books on Mathematics, Dover Publications, 2006.
URL https://books.google.com.br/books?id=sJj3DQAAQBAJ

[4] AVIGAD, J.; DE MOURA, L.; KONG, S.; ULLRICH; S., Theorem
Proving in Lean 4 (2022).
URL https://lean-lang.org/theorem_proving_in_lean4/

[5] AVIGAD, J.; DE MOURA, L.; KONG, S.; ULLRICH; S., Lean Manual
(2022).
URL https://lean-lang.org/lean4/doc/

[6] FILHO, R.C.M.B.; HAEUSLER, E.H.; SANTOS, J.B., Towards a proof
in Lean about the Horizontal Compression of Dag-Like Deriva-
tions in Minimal Purely Implicational Logic, in: The Seventeenth
International Workshop on Logical and Semantic Frameworks, with Ap-
plications, Belo Horizonte, Minas Gerais, Brazil, 2022, pp. 8–23.
URL https://lsfa2022.github.io/lsfa2022-preproc.pdf#page=11

[7] FILHO, R.C.M.B.; HAEUSLER, E.H.; SANTOS, J.B., On the Cover-
age Property of a Derivation Compression Algorithm, in: Anais do
IV Workshop Brasileiro de Lógica, SBC, Porto Alegre, RS, Brasil, 2023,
pp. 1–8. doi:10.5753/wbl.2023.230566.
URL https://sol.sbc.org.br/index.php/wbl/article/view/25167

[8] FILHO, R.C.M.B., Theorem-of-Branch-Redundancy: A formaliza-
tion in lean showing that every exponentially big proof in minimal im-

https://github.com/Robilsu/Horizontal-Compression
https://github.com/Robilsu/Horizontal-Compression
https://github.com/Robilsu/Horizontal-Compression
https://arxiv.org/abs/2206.02300
https://arxiv.org/abs/2206.02300
https://arxiv.org/abs/2206.02300
https://arxiv.org/abs/2206.02300
https://books.google.com.br/books?id=sJj3DQAAQBAJ
https://books.google.com.br/books?id=sJj3DQAAQBAJ
https://lean-lang.org/theorem_proving_in_lean4/
https://lean-lang.org/theorem_proving_in_lean4/
https://lean-lang.org/theorem_proving_in_lean4/
https://lean-lang.org/lean4/doc/
https://lean-lang.org/lean4/doc/
https://lsfa2022.github.io/lsfa2022-preproc.pdf#page=11
https://lsfa2022.github.io/lsfa2022-preproc.pdf#page=11
https://lsfa2022.github.io/lsfa2022-preproc.pdf#page=11
https://lsfa2022.github.io/lsfa2022-preproc.pdf#page=11
https://sol.sbc.org.br/index.php/wbl/article/view/25167
https://sol.sbc.org.br/index.php/wbl/article/view/25167
https://doi.org/10.5753/wbl.2023.230566
https://sol.sbc.org.br/index.php/wbl/article/view/25167
https://github.com/Robilsu/Theorem-of-Branch-Redundancy
https://github.com/Robilsu/Theorem-of-Branch-Redundancy
https://github.com/Robilsu/Theorem-of-Branch-Redundancy

Bibliography 57

plicational logic is also exponentially redundant (2019).
URL https://github.com/Robilsu/Theorem-of-Branch-Redundancy

[9] GORDEEV, L.; HAEUSLER, E.H., Proof Compression and NP
Versus PSPACE, Studia Logica 107 (1) (2019) 53–83. doi:10.1007/
s11225-017-9773-5.
URL https://doi.org/10.1007/s11225-017-9773-5

[10] GORDEEV, L.; HAEUSLER, E.H., Proof Compression and NP vs
PSPACE II, Bulletin of the Section of Logic 49 (3) (2020) 213–230.
doi:10.18778/0138-0680.2020.16.
URL https://doi.org/10.18778/0138-0680.2020.16

[11] GORDEEV, L.; HAEUSLER, E.H., Proof Compression and NP vs
PSPACE II: Addendum, Bulletin of the Section of Logic 51 (2) (2022)
197–205. doi:10.18778/0138-0680.2022.01.
URL https://doi.org/10.18778/0138-0680.2022.01

[12] HUDELMAIER, J., An O(n log n)-Space Decision Procedure for
Intuitionistic Propositional Logic, Journal of Logic and Computation
3 (1) (1993) 63–75. doi:10.1093/logcom/3.1.63.
URL https://doi.org/10.1093/logcom/3.1.63

[13] JÚNIOR, J.F.C.B.; HAEUSLER, E.H., A comparative study on com-
pression techniques for Propositional Proofs, in: Book of Abstracts,
19th Braz. Meeting on Logic, João Pessoa, Paraíba, Brazil, 2019, pp. 85–
86.
URL https://ebl2019.ci.ufpb.br/assets/Book_of_Abstracts_EBL_
2019.pdf#page=86

https://github.com/Robilsu/Theorem-of-Branch-Redundancy
https://github.com/Robilsu/Theorem-of-Branch-Redundancy
https://github.com/Robilsu/Theorem-of-Branch-Redundancy
https://doi.org/10.1007/s11225-017-9773-5
https://doi.org/10.1007/s11225-017-9773-5
https://doi.org/10.1007/s11225-017-9773-5
https://doi.org/10.1007/s11225-017-9773-5
https://doi.org/10.1007/s11225-017-9773-5
https://doi.org/10.18778/0138-0680.2020.16
https://doi.org/10.18778/0138-0680.2020.16
https://doi.org/10.18778/0138-0680.2020.16
https://doi.org/10.18778/0138-0680.2020.16
https://doi.org/10.18778/0138-0680.2022.01
https://doi.org/10.18778/0138-0680.2022.01
https://doi.org/10.18778/0138-0680.2022.01
https://doi.org/10.18778/0138-0680.2022.01
https://doi.org/10.1093/logcom/3.1.63
https://doi.org/10.1093/logcom/3.1.63
https://doi.org/10.1093/logcom/3.1.63
https://doi.org/10.1093/logcom/3.1.63
https://ebl2019.ci.ufpb.br/assets/Book_of_Abstracts_EBL_2019.pdf#page=86
https://ebl2019.ci.ufpb.br/assets/Book_of_Abstracts_EBL_2019.pdf#page=86
https://ebl2019.ci.ufpb.br/assets/Book_of_Abstracts_EBL_2019.pdf#page=86
https://ebl2019.ci.ufpb.br/assets/Book_of_Abstracts_EBL_2019.pdf#page=86

	Arguing NP = PSPACE: On the Coverage and Soundness of the Horizontal Compression Algorithm
	Resumo
	Table of contents
	Introduction
	Previous Work
	Proof Theory Background
	Horizontal Compression
	Primary Definitions
	The Horizontal Compression Algorithm and Rules
	The Preservation of Soundness of the Compression Rules

	Example of Horizontal Compression
	Formalisation in Lean
	Type Definitions
	Proving the Main Theorem

	Future Work
	Conclusion

